Polynomial selections and separation by polynomials

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial Selections and Separation by Polynomials

By R, N we denote the set of all reals and positive integers, respectively. Let I ⊂ R be an interval. In this paper we present a necessary and sufficient condition under which two functions f, g : I → R can be separated by a polynomial of degree at most n, where n ∈ N is a fixed number. Our main result is a generalization of the theorem concerning separation by affine functions obtained recentl...

متن کامل

Algebraic adjoint of the polynomials-polynomial matrix multiplication

This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field

متن کامل

Orthogonal Polynomials and Polynomial Approximations

3.1.1. Existence and uniqueness. Our immediate goal is to establish the existence of a sequence of orthogonal polynomials. Although we could, in principle, determine the coefficients a j of pn in the natural basis by using the orthogonality conditions (3.1.2), it is computationally advantageous to express pn in terms of lower-order orthogonal polynomials. Let us denote Pn := span { 1, x, x, · ·...

متن کامل

Polynomial Minimum Root Separation

The minimum root separation of an arbitrary polynomial P is defined as the minimum of the distances between distinct (real or complex) roots of P. Some asymptotically good lower bounds for the root separation of P are given, where P may have multiple zeros. There are applications in the analysis of complexity of algorithms and in the theory of algebraic and transcendental numbers.

متن کامل

Generalizations of Chebyshev polynomials and Polynomial Mappings

In this paper we show how polynomial mappings of degree K from a union of disjoint intervals onto [−1, 1] generate a countable number of special cases of generalizations of Chebyshev polynomials. We also derive a new expression for these generalized Chebyshev polynomials for any genus g, from which the coefficients of xn can be found explicitly in terms of the branch points and the recurrence c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 1996

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm-120-1-75-82